1. Fabrizio P, Longo VD: The chronological life span of Saccharomyces cerevisiae. Aging Cell 2003, 2:73–81.
2. Smith RG, Betancourt L, Sun Y: Molecular endocrinology and physiology of the aging central nervous system. Endocr. Rev. 2005, 26:203–250.
3. Chahal HS, Drake WM: The endocrine system and ageing. J. Pathol. 2007, 211:173–180.
4. Veldhuis JD: Aging and hormones of the hypothalamo-pituitary axis: gonadotropic axis in men and somatotropic axes in men and women. Ageing Res. Rev. 2008, 7:189–208.
5. Shimizu N, Yoshikawa N, Ito N, Maruyama T, Suzuki Y, Takeda S, Nakae J, Tagata Y, Nishitani S, Takehana K, Sano M, Fukuda K, Suematsu M, Morimoto C, Tanaka H: Crosstalk between glucocorticoid receptor and nutritional sensor mTOR in skeletal muscle. Cell Metab. 2011, 13:170–182.
6. Diz DI: Lewis K. Dahl memorial lecture: the renin-angiotensin system and aging. Hypertension 2008, 52:37–43.
7. Kawakami F, Okamura H, Tamada Y, Maebayashi Y, Fukui K, Ibata Y: Loss of day-night differences in VIP mRNA levels in the suprachiasmatic nucleus of aged rats. Neurosci. Lett. 1997, 222:99–102.
8. Roozendaal B, van Gool WA, Swaab DF, Hoogendijk JE, Mirmiran M: Changes in vasopressin cells of the rat suprachiasmatic nucleus with aging. Brain Res. 1987, 409:259–264.
9. Davidson AJ, Yamazaki S, Arble DM, Menaker M, Block GD: Resetting of central and peripheral circadian oscillators in aged rats. Neurobiol. Aging 2008, 29:471–477.
10. Asai M, Yoshinobu Y, Kaneko S, Mori A, Nikaido T, Moriya T, Akiyama M, Shibata S: Circadian profile of Per gene mRNA expression in the suprachiasmatic nucleus, paraventricular nucleus, and pineal body of aged rats. J. Neurosci. Res. 2001, 66:1133–1139.
11. Weinert H, Weinert D, Schurov I, Maywood ES, Hastings MH: Impaired expression of the mPer2 circadian clock gene in the suprachiasmatic nuclei of aging mice. Chronobiol. Int. 2001, 18:559–565.
12. Kondratov RV, Kondratova AA, Gorbacheva VY, Vykhovanets OV, Antoch MP: Early aging and age-related pathologies in mice deficient in BMAL1, the core componentof the circadian clock. Genes Dev. 2006, 20:1868–1873.
13. Wang M, Takagi G, Asai K, Resuello RG, Natividad FF, Vatner DE, Vatner SF, Lakatta EG: Aging increases aortic MMP-2 activity and angiotensin II in nonhuman primates. Hypertension 2003, 41:1308–1316.
14. Huang W, Alhenc Gelas F, Osborne-Pellegrin MJ: Protection of the arterial internal elastic lamina by inhibition of the renin-angiotensin system in the rat. Circ. Res. 1998, 82:879–890.
15. Michel JB, Heudes D, Michel O, Poitevin P, Philippe M, Scalbert E, Corman B, Levy BI: Effect of chronic ANG I-converting enzyme inhibition on aging processes. II. Large arteries. Am. J. Physiol. 1994, 267:R124–135.
16. Chang E, Harley CB: Telomere length and replicative aging in human vascular tissues. Proc. Natl. Acad. Sci. U.S.A. 1995, 92:11190–11194.
17. Sherr CJ, DePinho RA: Cellular senescence: mitotic clock or culture shock? Cell 2000, 102:407–410.
18. Erusalimsky JD: Vascular endothelial senescence: from mechanisms to pathophysiology. J. Appl. Physiol. 2009, 106:326–332.
19. Degens H: Age-related skeletal muscle dysfunction: causes and mechanisms. J Musculoskelet Neuronal Interact 2007, 7:246–252.
20. Conboy IM, Conboy MJ, Wagers AJ, Girma ER, Weissman IL, Rando TA: Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 2005, 433:760–764.
21. Brack AS, Conboy MJ, Roy S, Lee M, Kuo CJ, Keller C, Rando TA: Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science 2007, 317:807–810.
22. Fulle S, Di Donna S, Puglielli C, Pietrangelo T, Beccafico S, Bellomo R, Protasi F, Fanò G: Age-dependent imbalance of the antioxidative system in human satellite cells. Exp. Gerontol. 2005, 40:189–197.
23. Fraysse B, Desaphy J-F, Rolland J-F, Pierno S, Liantonio A, Giannuzzi V, Camerino C, Didonna MP, Cocchi D, De Luca A, Conte Camerino D: Fiber type-related changes in rat skeletal muscle calcium homeostasis during aging and restoration by growth hormone. Neurobiol. Dis. 2006, 21:372–380.
24. Alway SE, Degens H, Lowe DA, Krishnamurthy G: Increased myogenic repressor Id mRNA and protein levels in hindlimb muscles of aged rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2002, 282:R411–422.
25. Giangreco A, Qin M, Pintar JE, Watt FM: Epidermal stem cells are retained in vivo throughout skin aging. Aging Cell 2008, 7:250–259.
26. Manolagas SC, Parfitt AM: What old means to bone. Trends Endocrinol. Metab. 2010, 21:369–374.
27. Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, Nakayama O, Makishima M, Matsuda M, Shimomura I: Increased oxidative stress in obesity and its impact on metabolic syndrome. J. Clin. Invest. 2004, 114:1752–1761.
28. Baker DJ, Perez-Terzic C, Jin F, Pitel K, Niederländer NJ, Jeganathan K, Yamada S, Reyes S, Rowe L, Hiddinga HJ, Eberhardt NL, Terzic A, van Deursen JM: Opposing roles for p16Ink4a and p19Arf in senescence and ageing caused by BubR1 insufficiency. Nat. Cell Biol. 2008, 10:825–836.
29. Tchkonia T, Morbeck DE, Von Zglinicki T, Van Deursen J, Lustgarten J, Scrable H, Khosla S, Jensen MD, Kirkland JL: Fat tissue, aging, and cellular senescence. Aging Cell 2010, 9:667–684.
30. Kirkland JL, Tchkonia T, Pirtskhalava T, Han J, Karagiannides I: Adipogenesis and aging: does aging make fat go MAD? Exp. Gerontol. 2002, 37:757–767.
31. Minamino T, Orimo M, Shimizu I, Kunieda T, Yokoyama M, Ito T, Nojima A, Nabetani A, Oike Y, Matsubara H, Ishikawa F, Komuro I: A crucial role for adipose tissue p53 in the regulation of insulin resistance. Nat. Med. 2009, 15:1082–1087.
32. Bezy O, Tran TT, Pihlajamäki J, Suzuki R, Emanuelli B, Winnay J, Mori MA, Haas J, Biddinger SB, Leitges M, Goldfine AB, Patti ME, King GL, Kahn CR: PKCδ regulates hepatic insulin sensitivity and hepatosteatosis in mice and humans. J. Clin. Invest. 2011, 121:2504–2517.
33. Muoio DM, Newgard CB: Mechanisms of disease: molecular and metabolic mechanisms of insulin resistance and beta-cell failure in type 2 diabetes. Nat. Rev. Mol. Cell Biol. 2008, 9:193–205.
34. Samuel VT, Shulman GI: Mechanisms for insulin resistance: common threads and missing links. Cell 2012, 148:852–871.
35. Sebastian T, Malik R, Thomas S, Sage J, Johnson PF: C/EBPbeta cooperates with RB:E2F to implement Ras(V12)-induced cellular senescence. EMBO J. 2005, 24:3301–3312.
36. Timchenko NA: Aging and liver regeneration. Trends Endocrinol. Metab. 2009, 20:171–176.
38. Kawakami K, Nakamura A, Ishigami A, Goto S, Takahashi R: Age-related difference of site-specific histone modifications in rat liver. Biogerontology 2009, 10:415–421.
39. Sanz A, Stefanatos RKA: The mitochondrial free radical theory of aging: a critical view. Curr Aging Sci 2008, 1:10–21.
40. Giorgio M, Berry A, Berniakovich I, Poletaeva I, Trinei M, Stendardo M, Hagopian K, Ramsey JJ, Cortopassi G, Migliaccio E, Nötzli S, Amrein I, Lipp HP, Cirulli F, Pelicci PG: The p66Shc knocked out mice are short lived under natural condition. Aging Cell 2012, 11:162–168.
41. Salmon AB, Richardson A, Pérez VI: Update on the oxidative stress theory of aging: does oxidative stress play a role in aging or healthy aging? Free Radic. Biol. Med. 2010, 48:642–655.
42. Kim EB, Fang X, Fushan AA, Huang Z, Lobanov AV, Han L, Marino SM, Sun X, Turanov AA, Yang P, Yim SH, Zhao X, Kasaikina MV, Stoletzki N, Peng C, Polak P, Xiong Z, Kiezun A, Zhu Y, Chen Y, Kryukov GV, Zhang Q, Peshkin L, Yang L, Bronson RT, Buffenstein R, Wang B, Han C, Li Q, Chen L, Zhao W, Sunyaev SR, Park TJ, Zhang G, Wang J, Gladyshev VN: Genome sequencing reveals insights into physiology and longevity of the naked mole rat. Nature 2011, 479:223–227.
43. Yoo S-E, Chen L, Na R, Liu Y, Rios C, Van Remmen H, Richardson A, Ran Q: Gpx4 ablation in adult mice results in a lethal phenotype accompanied by neuronal loss in brain. Free Radical Biology & Medicine 2012.
44. Pani G: P66SHC and ageing: ROS and TOR? Aging (Albany NY) 2010, 2:514–518.
45. Kunz C, Saito Y, Schär P: DNA Repair in mammalian cells: Mismatched repair: variations on a theme. Cell. Mol. Life Sci. 2009, 66:1021–1038.
46. Robertson AB, Klungland A, Rognes T, Leiros I: DNA repair in mammalian cells: Base excision repair: the long and short of it. Cell. Mol. Life Sci. 2009, 66:981–993.
47. Nouspikel T: DNA repair in mammalian cells : Nucleotide excision repair: variations on versatility. Cell. Mol. Life Sci. 2009, 66:994–1009.
48. Li X, Heyer W-D: Homologous recombination in DNA repair and DNA damage tolerance. Cell Res. 2008, 18:99–113.
49. Mladenov E, Iliakis G: Induction and repair of DNA double strand breaks: the increasing spectrum of non-homologous end joining pathways. Mutat. Res. 2011, 711:61–72.
50. Lieber MR: The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu. Rev. Biochem. 2010, 79:181–211.
51. Cao K, Blair CD, Faddah DA, Kieckhaefer JE, Olive M, Erdos MR, Nabel EG, Collins FS: Progerin and telomere dysfunction collaborate to trigger cellular senescence in normal human fibroblasts. J. Clin. Invest. 2011, 121:2833–2844.
52. Garinis GA, van der Horst GTJ, Vijg J, Hoeijmakers JHJ: DNA damage and ageing: new-age ideas for an age-old problem. Nat. Cell Biol. 2008, 10:1241–1247.
53. Freitas AA, de Magalhães JP: A review and appraisal of the DNA damage theory of ageing. Mutat. Res. 2011, 728:12–22.
54. Chakravarti B, Chakravarti DN: Oxidative modification of proteins: age-related changes. Gerontology 2007, 53:128–139.
55. Stadtman ER: Protein oxidation and aging. Free Radic. Res. 2006, 40:1250–1258.
56. Negre-Salvayre A, Auge N, Ayala V, Basaga H, Boada J, Brenke R, Chapple S, Cohen G, Feher J, Grune T, Lengyel G, Mann GE, Pamplona R, Poli G, Portero-Otin M, Riahi Y, Salvayre R, Sasson S, Serrano J, Shamni O, Siems W, Siow RCM, Wiswedel I, Zarkovic K, Zarkovic N: Pathological aspects of lipid peroxidation. Free Radic. Res. 2010, 44:1125–1171.
57. Guéraud F, Atalay M, Bresgen N, Cipak A, Eckl PM, Huc L, Jouanin I, Siems W, Uchida K: Chemistry and biochemistry of lipid peroxidation products. Free Radic. Res. 2010, 44:1098–1124.
58. Jung T, Bader N, Grune T: Lipofuscin: formation, distribution, and metabolic consequences. Ann. N. Y. Acad. Sci. 2007, 1119:97–111.
59. Sulzer D, Mosharov E, Talloczy Z, Zucca FA, Simon JD, Zecca L: Neuronal pigmented autophagic vacuoles: lipofuscin, neuromelanin, and ceroid as macroautophagic responses during aging and disease. J. Neurochem. 2008, 106:24–36.
60. Grillo MA, Colombatto S: Advanced glycation end-products (AGEs): involvement in aging and in neurodegenerative diseases. Amino Acids 2008, 35:29–36.
61. Yan SF, Ramasamy R, Schmidt AM: The RAGE axis: a fundamental mechanism signaling danger to the vulnerable vasculature. Circ. Res. 2010, 106:842–853.
62. Aly A, Ganesan S: BRCA1, PARP, and 53BP1: conditional synthetic lethality and synthetic viability. J Mol Cell Biol 2011, 3:66–74.
63. Mallette FA, Mattiroli F, Cui G, Young LC, Hendzel MJ, Mer G, Sixma TK, Richard S: RNF8- and RNF168-dependent degradation of KDM4A/JMJD2A triggers 53BP1 recruitment to DNA damage sites. The EMBO Journal 2012.
64. Goodarzi AA, Kurka T, Jeggo PA: KAP-1 phosphorylation regulates CHD3 nucleosome remodeling during the DNA double-strand break response. Nat. Struct. Mol. Biol. 2011, 18:831–839.
65. Li D-Q, Kumar R: Mi-2/NuRD complex making inroads into DNA-damage response pathway. Cell Cycle 2010, 9:2071–2079.
66. Rodier F, Muñoz DP, Teachenor R, Chu V, Le O, Bhaumik D, Coppé J-P, Campeau E, Beauséjour CM, Kim S-H, Davalos AR, Campisi J: DNA-SCARS: distinct nuclear structures that sustain damage-induced senescence growth arrest and inflammatory cytokine secretion. J. Cell. Sci. 2011, 124:68–81.
67. Wang C, Jurk D, Maddick M, Nelson G, Martin-Ruiz C, von Zglinicki T: DNA damage response and cellular senescence in tissues of aging mice. Aging Cell 2009, 8:311–323.
68. Méndez-Acuña L, Di Tomaso MV, Palitti F, Martínez-López W: Histone post-translational modifications in DNA damage response. Cytogenet. Genome Res. 2010, 128:28–36.
69. Xu Y, Price BD: Chromatin dynamics and the repair of DNA double strand breaks. Cell Cycle 2011, 10:261–267.
70. Rossetto D, Truman AW, Kron SJ, Côté J: Epigenetic modifications in double-strand break DNA damage signaling and repair. Clin. Cancer Res. 2010, 16:4543–4552.
71. Berchtold NC, Cribbs DH, Coleman PD, Rogers J, Head E, Kim R, Beach T, Miller C, Troncoso J, Trojanowski JQ, Zielke HR, Cotman CW: Gene expression changes in the course of normal brain aging are sexually dimorphic. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:15605–15610.
72. Kim SK: Common aging pathways in worms, flies, mice and humans. J. Exp. Biol. 2007, 210:1607–1612.
73. Somel M, Guo S, Fu N, Yan Z, Hu HY, Xu Y, Yuan Y, Ning Z, Hu Y, Menzel C, Hu H, Lachmann M, Zeng R, Chen W, Khaitovich P: MicroRNA, mRNA, and protein expression link development and aging in human and macaque brain. Genome Res. 2010, 20:1207–1218.
74. Barger JL, Kayo T, Vann JM, Arias EB, Wang J, Hacker TA, Wang Y, Raederstorff D, Morrow JD, Leeuwenburgh C, Allison DB, Saupe KW, Cartee GD, Weindruch R, Prolla TA: A low dose of dietary resveratrol partially mimics caloric restriction and retards aging parameters in mice. PLoS ONE 2008, 3:e2264.
75. Lindner AB, Demarez A: Protein aggregation as a paradigm of aging. Biochim. Biophys. Acta 2009, 1790:980–996.
76. Tavernarakis N: Ageing and the regulation of protein synthesis: a balancing act? Trends Cell Biol. 2008, 18:228–235.
77. Peleg S, Sananbenesi F, Zovoilis A, Burkhardt S, Bahari-Javan S, Agis-Balboa RC, Cota P, Wittnam JL, Gogol-Doering A, Opitz L, Salinas-Riester G, Dettenhofer M, Kang H, Farinelli L, Chen W, Fischer A: Altered histone acetylation is associated with age-dependent memory impairment in mice. Science 2010, 328:753–756.
78. Widschwendter M, Fiegl H, Egle D, Mueller-Holzner E, Spizzo G, Marth C, Weisenberger DJ, Campan M, Young J, Jacobs I, Laird PW: Epigenetic stem cell signature in cancer. Nat. Genet. 2007, 39:157–158.
79. Schlesinger Y, Straussman R, Keshet I, Farkash S, Hecht M, Zimmerman J, Eden E, Yakhini Z, Ben-Shushan E, Reubinoff BE, Bergman Y, Simon I, Cedar H: Polycomb-mediated methylation on Lys27 of histone H3 pre-marks genes for de novo methylation in cancer. Nat. Genet. 2007, 39:232–236.
80. Takeshima H, Yamashita S, Shimazu T, Niwa T, Ushijima T: The presence of RNA polymerase II, active or stalled, predicts epigenetic fate of promoter CpG islands. Genome Res. 2009, 19:1974–1982.
81. Gebhard C, Benner C, Ehrich M, Schwarzfischer L, Schilling E, Klug M, Dietmaier W, Thiede C, Holler E, Andreesen R, Rehli M: General transcription factor binding at CpG islands in normal cells correlates with resistance to de novo DNA methylation in cancer cells. Cancer Res. 2010, 70:1398–1407.
82. Weisenberger DJ, Siegmund KD, Campan M, Young J, Long TI, Faasse MA, Kang GH, Widschwendter M, Weener D, Buchanan D, Koh H, Simms L, Barker M, Leggett B, Levine J, Kim M, French AJ, Thibodeau SN, Jass J, Haile R, Laird PW: CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat. Genet. 2006, 38:787–793.
83. Keshet I, Schlesinger Y, Farkash S, Rand E, Hecht M, Segal E, Pikarski E, Young RA, Niveleau A, Cedar H, Simon I: Evidence for an instructive mechanism of de novo methylation in cancer cells. Nat. Genet. 2006, 38:149–153.
84. Ono T, Takahashi N, Okada S: Age-associated changes in DNA methylation and mRNA level of the c-myc gene in spleen and liver of mice. Mutat. Res. 1989, 219:39–50.
85. Easwaran H, Johnstone SE, Van Neste L, Ohm J, Mosbruger T, Wang Q, Aryee MJ, Joyce P, Ahuja N, Weisenberger D, Collisson E, Zhu J, Yegnasubramanian S, Matsui W, Baylin SB: A DNA hypermethylation module for the stem/progenitor cell signature of cancer. Genome Research 2012.
86. Hon GC, Hawkins RD, Caballero OL, Lo C, Lister R, Pelizzola M, Valsesia A, Ye Z, Kuan S, Edsall LE, Camargo AA, Stevenson BJ, Ecker JR, Bafna V, Strausberg RL, Simpson AJ, Ren B: Global DNA hypomethylation coupled to repressive chromatin domain formation and gene silencing in breast cancer. Genome Res. 2012, 22:246–258.
87. Xu Y, Hu B, Choi A-J, Gopalan B, Lee BH, Kalady MF, Church JM, Ting AH: Unique DNA methylome profiles in CpG island methylator phenotype colon cancers. Genome Res. 2012, 22:283–291.
88. Turcan S, Rohle D, Goenka A, Walsh LA, Fang F, Yilmaz E, Campos C, Fabius AWM, Lu C, Ward PS, Thompson CB, Kaufman A, Guryanova O, Levine R, Heguy A, Viale A, Morris LGT, Huse JT, Mellinghoff IK, Chan TA: IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature 2012, 483:479–483.
89. Lu C, Ward PS, Kapoor GS, Rohle D, Turcan S, Abdel-Wahab O, Edwards CR, Khanin R, Figueroa ME, Melnick A, Wellen KE, O’Rourke DM, Berger SL, Chan TA, Levine RL, Mellinghoff IK, Thompson CB: IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature 2012, 483:474–478.
90. Sarg B, Koutzamani E, Helliger W, Rundquist I, Lindner HH: Postsynthetic trimethylation of histone H4 at lysine 20 in mammalian tissues is associated with aging. J. Biol. Chem. 2002, 277:39195–39201.
91. Takai D, Yagi Y, Habib N, Sugimura T, Ushijima T: Hypomethylation of LINE1 retrotransposon in human hepatocellular carcinomas, but not in surrounding liver cirrhosis. Jpn. J. Clin. Oncol. 2000, 30:306–309.
92. So K, Tamura G, Honda T, Homma N, Waki T, Togawa N, Nishizuka S, Motoyama T: Multiple tumor suppressor genes are increasingly methylated with age in non-neoplastic gastric epithelia. Cancer Sci. 2006, 97:1155–1158.
93. Maegawa S, Hinkal G, Kim HS, Shen L, Zhang L, Zhang J, Zhang N, Liang S, Donehower LA, Issa J-PJ: Widespread and tissue specific age-related DNA methylation changes in mice. Genome Res. 2010, 20:332–340.
94. Rakyan VK, Down TA, Maslau S, Andrew T, Yang T-P, Beyan H, Whittaker P, McCann OT, Finer S, Valdes AM, Leslie RD, Deloukas P, Spector TD: Human aging-associated DNA hypermethylation occurs preferentially at bivalent chromatin domains. Genome Res. 2010, 20:434–439.
95. Teschendorff AE, Menon U, Gentry-Maharaj A, Ramus SJ, Weisenberger DJ, Shen H, Campan M, Noushmehr H, Bell CG, Maxwell AP, Savage DA, Mueller-Holzner E, Marth C, Kocjan G, Gayther SA, Jones A, Beck S, Wagner W, Laird PW, Jacobs IJ, Widschwendter M: Age-dependent DNA methylation of genes that are suppressed in stem cells is a hallmark of cancer. Genome Res. 2010, 20:440–446.
96. Takasugi M: Progressive age-dependent DNA methylation changes start before adulthood in mouse tissues. Mech. Ageing Dev. 2011, 132:65–71.
97. Hahn MA, Hahn T, Lee D-H, Esworthy RS, Kim B-W, Riggs AD, Chu F-F, Pfeifer GP: Methylation of polycomb target genes in intestinal cancer is mediated by inflammation. Cancer Res. 2008, 68:10280–10289.
98. Bollati V, Schwartz J, Wright R, Litonjua A, Tarantini L, Suh H, Sparrow D, Vokonas P, Baccarelli A: Decline in genomic DNA methylation through aging in a cohort of elderly subjects. Mech. Ageing Dev. 2009, 130:234–239.
99. Wilson VL, Smith RA, Ma S, Cutler RG: Genomic 5-methyldeoxycytidine decreases with age. J. Biol. Chem. 1987, 262:9948–9951.
100. Kaneda A, Tsukamoto T, Takamura-Enya T, Watanabe N, Kaminishi M, Sugimura T, Tatematsu M, Ushijima T: Frequent hypomethylation in multiple promoter CpG islands is associated with global hypomethylation, but not with frequent promoter hypermethylation. Cancer Sci. 2004, 95:58–64.
101. Frigola J, Solé X, Paz MF, Moreno V, Esteller M, Capellà G, Peinado MA: Differential DNA hypermethylation and hypomethylation signatures in colorectal cancer. Hum. Mol. Genet. 2005, 14:319–326.
102. Slagboom PE, de Leeuw WJ, Vijg J: Messenger RNA levels and methylation patterns of GAPDH and beta-actin genes in rat liver, spleen and brain in relation to aging. Mech. Ageing Dev. 1990, 53:243–257.
103. Furuta J, Umebayashi Y, Miyamoto K, Kikuchi K, Otsuka F, Sugimura T, Ushijima T: Promoter methylation profiling of 30 genes in human malignant melanoma. Cancer Sci. 2004, 95:962–968.
104. Rodriguez J, Frigola J, Vendrell E, Risques R-A, Fraga MF, Morales C, Moreno V, Esteller M, Capellà G, Ribas M, Peinado MA: Chromosomal instability correlates with genome-wide DNA demethylation in human primary colorectal cancers. Cancer Res. 2006, 66:8462–9468.
105. Grunau C, Sanchez C, Ehrlich M, van der Bruggen P, Hindermann W, Rodriguez C, Krieger S, Dubeau L, Fiala E, De Sario A: Frequent DNA hypomethylation of human juxtacentromeric BAGE loci in cancer. Genes Chromosomes Cancer 2005, 43:11–24.
106. Hitchins MP, Lin VA, Buckle A, Cheong K, Halani N, Ku S, Kwok C-T, Packham D, Suter CM, Meagher A, Stirzaker C, Clark S, Hawkins NJ, Ward RL: Epigenetic inactivation of a cluster of genes flanking MLH1 in microsatellite-unstable colorectal cancer. Cancer Res. 2007, 67:9107–9116.
107. Takatsu M, Uyeno S, Komura J, Watanabe M, Ono T: Age-dependent alterations in mRNA level and promoter methylation of collagen alpha1(I) gene in human periodontal ligament. Mech. Ageing Dev. 1999, 110:37–48.
108. Rai TS, Adams PD: Lessons from senescence: Chromatin maintenance in non-proliferating cells. Biochim. Biophys. Acta 2012, 1819:322–331.
109. Rönn T, Poulsen P, Hansson O, Holmkvist J, Almgren P, Nilsson P, Tuomi T, Isomaa B, Groop L, Vaag A, Ling C: Age influences DNA methylation and gene expression of COX7A1 in human skeletal muscle. Diabetologia 2008, 51:1159–1168.
110. Jiang MH, Fei J, Lan MS, Lu ZP, Liu M, Fan WW, Gao X, Lu DR: Hypermethylation of hepatic Gck promoter in ageing rats contributes to diabetogenic potential. Diabetologia 2008, 51:1525–1533.
111. Zhang Z, Deng C, Lu Q, Richardson B: Age-dependent DNA methylation changes in the ITGAL (CD11a) promoter. Mech. Ageing Dev. 2002, 123:1257–1268.
112. Ling C, Poulsen P, Simonsson S, Rönn T, Holmkvist J, Almgren P, Hagert P, Nilsson E, Mabey AG, Nilsson P, Vaag A, Groop L: Genetic and epigenetic factors are associated with expression of respiratory chain component NDUFB6 in human skeletal muscle. J. Clin. Invest. 2007, 117:3427–3435.
113. Jin J, Iakova P, Jiang Y, Medrano EE, Timchenko NA: The reduction of SIRT1 in livers of old mice leads to impaired body homeostasis and to inhibition of liver proliferation. Hepatology 2011, 54:989–998.
114. Sasaki T, Maier B, Bartke A, Scrable H: Progressive loss of SIRT1 with cell cycle withdrawal. Aging Cell 2006, 5:413–422.
115. Schoeftner S, Blasco MA: Chromatin regulation and non-coding RNAs at mammalian telomeres. Semin. Cell Dev. Biol. 2010, 21:186–193.
116. O’Sullivan RJ, Kubicek S, Schreiber SL, Karlseder J: Reduced histone biosynthesis and chromatin changes arising from a damage signal at telomeres. Nat. Struct. Mol. Biol. 2010, 17:1218–1225.
117. Macieira-Coelho A, Puvion-Dutilleul F: Evaluation of the reorganization in the high-order structure of DNA occurring during cell senescence. Mutat. Res. 1989, 219:165–170.
118. Berkowitz EM, Sanborn AC, Vaughan DW: Chromatin structure in neuronal and neuroglial cell nuclei as a function of age. J. Neurochem. 1983, 41:516–523.
119. Ishimi Y, Kojima M, Takeuchi F, Miyamoto T, Yamada M, Hanaoka F: Changes in chromatin structure during aging of human skin fibroblasts. Exp. Cell Res. 1987, 169:458–467.
120. Kim W, Kim R, Park G, Park J-W, Kim J-E: Deficiency of H3K79 histone methyltransferase Dot1-like protein (DOT1L) inhibits cell proliferation. J. Biol. Chem. 2012, 287:5588–5599.
121. Pollina EA, Brunet A: Epigenetic regulation of aging stem cells. Oncogene 2011, 30:3105–3126.
122. Robertson KD: DNA methylation, methyltransferases, and cancer. Oncogene 2001, 20:3139–3155.
123. Yamada Y, Jackson-Grusby L, Linhart H, Meissner A, Eden A, Lin H, Jaenisch R: Opposing effects of DNA hypomethylation on intestinal and liver carcinogenesis. Proc. Natl. Acad. Sci. U.S.A. 2005, 102:13580–13585.
124. Wilson VL, Jones PA: DNA methylation decreases in aging but not in immortal cells. Science 1983, 220:1055–1057.
125. Nittis T, Guittat L, Stewart SA: Alternative lengthening of telomeres (ALT) and chromatin: is there a connection? Biochimie 2008, 90:5–12.
126. Jaskelioff M, Muller FL, Paik J-H, Thomas E, Jiang S, Adams AC, Sahin E, Kost-Alimova M, Protopopov A, Cadiñanos J, Horner JW, Maratos-Flier E, Depinho RA: Telomerase reactivation reverses tissue degeneration in aged telomerase-deficient mice. Nature 2011, 469:102–106.
127. Tomás-Loba A, Flores I, Fernández-Marcos PJ, Cayuela ML, Maraver A, Tejera A, Borrás C, Matheu A, Klatt P, Flores JM, Viña J, Serrano M, Blasco MA: Telomerase reverse transcriptase delays aging in cancer-resistant mice. Cell 2008, 135:609–622.
128. Pfingsten JS, Goodrich KJ, Taabazuing C, Ouenzar F, Chartrand P, Cech TR: Mutually exclusive binding of telomerase RNA and DNA by ku alters telomerase recruitment model. Cell 2012, 148:922–932.
129. Kaszubowska L: Telomere shortening and ageing of the immune system. J. Physiol. Pharmacol. 2008, 59 Suppl 9:169–186.
130. Aikata H, Takaishi H, Kawakami Y, Takahashi S, Kitamoto M, Nakanishi T, Nakamura Y, Shimamoto F, Kajiyama G, Ide T: Telomere reduction in human liver tissues with age and chronic inflammation. Exp. Cell Res. 2000, 256:578–582.
131. Takubo K, Nakamura K, Izumiyama N, Furugori E, Sawabe M, Arai T, Esaki Y, Mafune K, Kammori M, Fujiwara M, Kato M, Oshimura M, Sasajima K: Telomere shortening with aging in human liver. J. Gerontol. A Biol. Sci. Med. Sci. 2000, 55:B533–536.
132. Shawi M, Autexier C: Telomerase, senescence and ageing. Mech. Ageing Dev. 2008, 129:3–10.
133. Martinez P, Siegl-Cachedenier I, Flores JM, Blasco MA: MSH2 deficiency abolishes the anticancer and pro-aging activity of short telomeres. Aging Cell 2009, 8:2–17.
134. Sahin E, Colla S, Liesa M, Moslehi J, Müller FL, Guo M, Cooper M, Kotton D, Fabian AJ, Walkey C, Maser RS, Tonon G, Foerster F, Xiong R, Wang YA, Shukla SA, Jaskelioff M, Martin ES, Heffernan TP, Protopopov A, Ivanova E, Mahoney JE, Kost-Alimova M, Perry SR, Bronson R, Liao R, Mulligan R, Shirihai OS, Chin L, DePinho RA: Telomere dysfunction induces metabolic and mitochondrial compromise. Nature 2011, 470:359–365.
135. Horikawa I, Michishita E, Barrett JC: Regulation of hTERT transcription: a target of cellular and viral mechanisms for immortalization and carcinogenesis. Cytotechnology 2004, 45:23–32.
136. Martínez P, Blasco MA: Telomeric and extra-telomeric roles for telomerase and the telomere-binding proteins. Nat. Rev. Cancer 2011, 11:161–176.
137. Aubert G, Lansdorp PM: Telomeres and aging. Physiol. Rev. 2008, 88:557–579.
138. Wang J, Sun Q, Morita Y, Jiang H, Groß A, Lechel A, Hildner K, Guachalla LM, Gompf A, Hartmann D, Schambach A, Wuestefeld T, Dauch D, Schrezenmeier H, Hofmann W-K, Nakauchi H, Ju Z, Kestler HA, Zender L, Rudolph KL: A Differentiation Checkpoint Limits Hematopoietic Stem Cell Self-Renewal in Response to DNA Damage. Cell 2012, 148:1001–1014.
139. Martínez P, Blasco MA: Role of shelterin in cancer and aging. Aging Cell 2010, 9:653–666.
140. Donate LE, Blasco MA: Telomeres in cancer and ageing. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 2011, 366:76–84.
141. Jain D, Cooper JP: Telomeric strategies: means to an end. Annu. Rev. Genet. 2010, 44:243–269.
142. Sahin E, Depinho RA: Linking functional decline of telomeres, mitochondria and stem cells during ageing. Nature 2010, 464:520–528.
143. Malumbres M, Barbacid M: Cell cycle, CDKs and cancer: a changing paradigm. Nat. Rev. Cancer 2009, 9:153–166.
144. Grotewiel MS, Martin I, Bhandari P, Cook-Wiens E: Functional senescence in Drosophila melanogaster. Ageing Res. Rev. 2005, 4:372–397.
145. Maehara K, Yamakoshi K, Ohtani N, Kubo Y, Takahashi A, Arase S, Jones N, Hara E: Reduction of total E2F/DP activity induces senescence-like cell cycle arrest in cancer cells lacking functional pRB and p53. J. Cell Biol. 2005, 168:553–560.
146. Fujita K, Mondal AM, Horikawa I, Nguyen GH, Kumamoto K, Sohn JJ, Bowman ED, Mathe EA, Schetter AJ, Pine SR, Ji H, Vojtesek B, Bourdon J-C, Lane DP, Harris CC: p53 isoforms Delta133p53 and p53beta are endogenous regulators of replicative cellular senescence. Nat. Cell Biol. 2009, 11:1135–1142.
147. Cánepa ET, Scassa ME, Ceruti JM, Marazita MC, Carcagno AL, Sirkin PF, Ogara MF: INK4 proteins, a family of mammalian CDK inhibitors with novel biological functions. IUBMB Life 2007, 59:419–426.
148. Popov N, Gil J: Epigenetic regulation of the INK4b-ARF-INK4a locus: in sickness and in health. Epigenetics 2010, 5:685–690.
149. Gil J, Peters G: Regulation of the INK4b-ARF-INK4a tumour suppressor locus: all for one or one for all. Nat. Rev. Mol. Cell Biol. 2006, 7:667–677.
150. Li J, Poi MJ, Tsai M-D: Regulatory mechanisms of tumor suppressor P16(INK4A) and their relevance to cancer. Biochemistry 2011, 50:5566–5582.
151. Gonzalez S, Klatt P, Delgado S, Conde E, Lopez-Rios F, Sanchez-Cespedes M, Mendez J, Antequera F, Serrano M: Oncogenic activity of Cdc6 through repression of the INK4/ARF locus. Nature 2006, 440:702–706.
152. Kippin TE, Martens DJ, van der Kooy D: p21 loss compromises the relative quiescence of forebrain stem cell proliferation leading to exhaustion of their proliferation capacity. Genes Dev. 2005, 19:756–767.
153. Ohtani N, Imamura Y, Yamakoshi K, Hirota F, Nakayama R, Kubo Y, Ishimaru N, Takahashi A, Hirao A, Shimizu T, Mann DJ, Saya H, Hayashi Y, Arase S, Matsumoto M, Kazuki N, Hara E: Visualizing the dynamics of p21(Waf1/Cip1) cyclin-dependent kinase inhibitor expression in living animals. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:15034–15039.
154. Takahashi A, Imai Y, Yamakoshi K, Kuninaka S, Ohtani N, Yoshimoto S, Hori S, Tachibana M, Anderton E, Takeuchi T, Shinkai Y, Peters G, Saya H, Hara E: DNA damage signaling triggers degradation of histone methyltransferases through APC/C(Cdh1) in senescent cells. Mol. Cell 2012, 45:123–131.
155. Jung Y-S, Qian Y, Chen X: Examination of the expanding pathways for the regulation of p21 expression and activity. Cell. Signal. 2010, 22:1003–1012.
156. Chan HM, Narita M, Lowe SW, Livingston DM: The p400 E1A-associated protein is a novel component of the p53 --> p21 senescence pathway. Genes Dev. 2005, 19:196–201.
157. Young AP, Schlisio S, Minamishima YA, Zhang Q, Li L, Grisanzio C, Signoretti S, Kaelin WG Jr: VHL loss actuates a HIF-independent senescence programme mediated by Rb and p400. Nat. Cell Biol. 2008, 10:361–369.
158. Ozono E, Komori H, Iwanaga R, Ikeda M-A, Iseki S, Ohtani K: E2F-like elements in p27(Kip1) promoter specifically sense deregulated E2F activity. Genes Cells 2009, 14:89–99.
159. Lee J, Kim SS: The function of p27 KIP1 during tumor development. Exp. Mol. Med. 2009, 41:765–771.
160. Fernandez-Marcos PJ, Pantoja C, Gonzalez-Rodriguez A, Martin N, Flores JM, Valverde AM, Hara E, Serrano M: Normal proliferation and tumorigenesis but impaired pancreatic function in mice lacking the cell cycle regulator sei1. PLoS ONE 2010, 5:e8744.
161. Pateras IS, Apostolopoulou K, Niforou K, Kotsinas A, Gorgoulis VG: p57KIP2: “Kip”ing the cell under control. Mol. Cancer Res. 2009, 7:1902–1919.
162. Herbig U, Ferreira M, Condel L, Carey D, Sedivy JM: Cellular senescence in aging primates. Science 2006, 311:1257.
163. Tsuji T, Aoshiba K, Nagai A: Alveolar cell senescence exacerbates pulmonary inflammation in patients with chronic obstructive pulmonary disease. Respiration 2010, 80:59–70.
164. Zhou F, Onizawa S, Nagai A, Aoshiba K: Epithelial cell senescence impairs repair process and exacerbates inflammation after airway injury. Respir. Res. 2011, 12:78.
165. Müller K-C, Welker L, Paasch K, Feindt B, Erpenbeck VJ, Hohlfeld JM, Krug N, Nakashima M, Branscheid D, Magnussen H, Jörres RA, Holz O: Lung fibroblasts from patients with emphysema show markers of senescence in vitro. Respir. Res. 2006, 7:32.
166. Minamino T, Miyauchi H, Yoshida T, Ishida Y, Yoshida H, Komuro I: Endothelial cell senescence in human atherosclerosis: role of telomere in endothelial dysfunction. Circulation 2002, 105:1541–1544.
167. Krizhanovsky V, Yon M, Dickins RA, Hearn S, Simon J, Miething C, Yee H, Zender L, Lowe SW: Senescence of activated stellate cells limits liver fibrosis. Cell 2008, 134:657–667.
168. Price JS, Waters JG, Darrah C, Pennington C, Edwards DR, Donell ST, Clark IM: The role of chondrocyte senescence in osteoarthritis. Aging Cell 2002, 1:57–65.
169. Kang T-W, Yevsa T, Woller N, Hoenicke L, Wuestefeld T, Dauch D, Hohmeyer A, Gereke M, Rudalska R, Potapova A, Iken M, Vucur M, Weiss S, Heikenwalder M, Khan S, Gil J, Bruder D, Manns M, Schirmacher P, Tacke F, Ott M, Luedde T, Longerich T, Kubicka S, Zender L: Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature 2011, 479:547–551.
170. Michaloglou C, Vredeveld LCW, Soengas MS, Denoyelle C, Kuilman T, van der Horst CMAM, Majoor DM, Shay JW, Mooi WJ, Peeper DS: BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 2005, 436:720–724.
171. Itahana K, Campisi J, Dimri GP: Mechanisms of cellular senescence in human and mouse cells. Biogerontology 2004, 5:1–10.
172. Krishnamurthy J, Torrice C, Ramsey MR, Kovalev GI, Al-Regaiey K, Su L, Sharpless NE: Ink4a/Arf expression is a biomarker of aging. J. Clin. Invest. 2004, 114:1299–1307.
173. Takahashi A, Ohtani N, Yamakoshi K, Iida S, Tahara H, Nakayama K, Nakayama KI, Ide T, Saya H, Hara E: Mitogenic signalling and the p16INK4a-Rb pathway cooperate to enforce irreversible cellular senescence. Nat. Cell Biol. 2006, 8:1291–1297.
174. Vernier M, Bourdeau V, Gaumont-Leclerc M-F, Moiseeva O, Bégin V, Saad F, Mes-Masson A-M, Ferbeyre G: Regulation of E2Fs and senescence by PML nuclear bodies. Genes Dev. 2011, 25:41–50.
175. DeNicola GM, Tuveson DA: RAS in cellular transformation and senescence. Eur. J. Cancer 2009, 45 Suppl 1:211–216.
176. Courtois-Cox S, Genther Williams SM, Reczek EE, Johnson BW, McGillicuddy LT, Johannessen CM, Hollstein PE, MacCollin M, Cichowski K: A negative feedback signaling network underlies oncogene-induced senescence. Cancer Cell 2006, 10:459–472.
177. Wajapeyee N, Serra RW, Zhu X, Mahalingam M, Green MR: Oncogenic BRAF induces senescence and apoptosis through pathways mediated by the secreted protein IGFBP7. Cell 2008, 132:363–374.
178. Shamma A, Takegami Y, Miki T, Kitajima S, Noda M, Obara T, Okamoto T, Takahashi C: Rb Regulates DNA damage response and cellular senescence through E2F-dependent suppression of N-ras isoprenylation. Cancer Cell 2009, 15:255–269.
179. Chen Z, Trotman LC, Shaffer D, Lin H-K, Dotan ZA, Niki M, Koutcher JA, Scher HI, Ludwig T, Gerald W, Cordon-Cardo C, Pandolfi PP: Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 2005, 436:725–730.
180. Lin H-K, Chen Z, Wang G, Nardella C, Lee S-W, Chan C-H, Chan C-H, Yang W-L, Wang J, Egia A, Nakayama KI, Cordon-Cardo C, Teruya-Feldstein J, Pandolfi PP: Skp2 targeting suppresses tumorigenesis by Arf-p53-independent cellular senescence. Nature 2010, 464:374–379.
181. Dankort D, Curley DP, Cartlidge RA, Nelson B, Karnezis AN, Damsky WE Jr, You MJ, DePinho RA, McMahon M, Bosenberg M: Braf(V600E) cooperates with Pten loss to induce metastatic melanoma. Nat. Genet. 2009, 41:544–552.
182. Dhomen N, Reis-Filho JS, da Rocha Dias S, Hayward R, Savage K, Delmas V, Larue L, Pritchard C, Marais R: Oncogenic Braf induces melanocyte senescence and melanoma in mice. Cancer Cell 2009, 15:294–303.
183. Haferkamp S, Scurr LL, Becker TM, Frausto M, Kefford RF, Rizos H: Oncogene-induced senescence does not require the p16(INK4a) or p14ARF melanoma tumor suppressors. J. Invest. Dermatol. 2009, 129:1983–1991.
184. Freedberg DE, Rigas SH, Russak J, Gai W, Kaplow M, Osman I, Turner F, Randerson-Moor JA, Houghton A, Busam K, Timothy Bishop D, Bastian BC, Newton-Bishop JA, Polsky D: Frequent p16-independent inactivation of p14ARF in human melanoma. J. Natl. Cancer Inst. 2008, 100:784–795.
185. Gray-Schopfer VC, Cheong SC, Chong H, Chow J, Moss T, Abdel-Malek ZA, Marais R, Wynford-Thomas D, Bennett DC: Cellular senescence in naevi and immortalisation in melanoma: a role for p16? Br. J. Cancer 2006, 95:496–505.
186. Yang N-C, Hu M-L: The limitations and validities of senescence associated-beta-galactosidase activity as an aging marker for human foreskin fibroblast Hs68 cells. Exp. Gerontol. 2005, 40:813–819.
187. Yang H-S, Hinds PW: Increased ezrin expression and activation by CDK5 coincident with acquisition of the senescent phenotype. Mol. Cell 2003, 11:1163–1176.
188. Coppé J-P, Patil CK, Rodier F, Krtolica A, Beauséjour CM, Parrinello S, Hodgson JG, Chin K, Desprez P-Y, Campisi J: A human-like senescence-associated secretory phenotype is conserved in mouse cells dependent on physiological oxygen. PLoS ONE 2010, 5:e9188.
189. Rodier F, Coppé J-P, Patil CK, Hoeijmakers WAM, Muñoz DP, Raza SR, Freund A, Campeau E, Davalos AR, Campisi J: Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Nat. Cell Biol. 2009, 11:973–979.
190. Coppé J-P, Desprez P-Y, Krtolica A, Campisi J: The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol 2010, 5:99–118.
191. Schnabl B, Purbeck CA, Choi YH, Hagedorn CH, Brenner D: Replicative senescence of activated human hepatic stellate cells is accompanied by a pronounced inflammatory but less fibrogenic phenotype. Hepatology 2003, 37:653–664.
192. Shelton DN, Chang E, Whittier PS, Choi D, Funk WD: Microarray analysis of replicative senescence. Curr. Biol. 1999, 9:939–945.
193. Salminen A, Ojala J, Kaarniranta K, Haapasalo A, Hiltunen M, Soininen H: Astrocytes in the aging brain express characteristics of senescence-associated secretory phenotype. Eur. J. Neurosci. 2011, 34:3–11.
194. Abbott NJ, Rönnbäck L, Hansson E: Astrocyte-endothelial interactions at the blood-brain barrier. Nat. Rev. Neurosci. 2006, 7:41–53.
195. Campuzano O, Castillo-Ruiz MM, Acarin L, Castellano B, Gonzalez B: Increased levels of proinflammatory cytokines in the aged rat brain attenuate injury-induced cytokine response after excitotoxic damage. J. Neurosci. Res. 2009, 87:2484–2497.
196. Bitto A, Sell C, Crowe E, Lorenzini A, Malaguti M, Hrelia S, Torres C: Stress-induced senescence in human and rodent astrocytes. Exp. Cell Res. 2010, 316:2961–2968.
197. Kuilman T, Michaloglou C, Vredeveld LCW, Douma S, van Doorn R, Desmet CJ, Aarden LA, Mooi WJ, Peeper DS: Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell 2008, 133:1019–1031.
198. Salminen A, Kauppinen A, Kaarniranta K: Emerging role of NF-κB signaling in the induction of senescence-associated secretory phenotype (SASP). Cell. Signal. 2012, 24:835–845.
199. Nelson G, Wordsworth J, Wang C, Jurk D, Lawless C, Martin-Ruiz C, von Zglinicki T: A senescent cell bystander effect: senescence-induced senescence. Aging Cell 2012, 11:345–349.
200. Takeuchi S, Takahashi A, Motoi N, Yoshimoto S, Tajima T, Yamakoshi K, Hirao A, Yanagi S, Fukami K, Ishikawa Y, Sone S, Hara E, Ohtani N: Intrinsic cooperation between p16INK4a and p21Waf1/Cip1 in the onset of cellular senescence and tumor suppression in vivo. Cancer Res. 2010, 70:9381–9390.
201. Stein GH, Drullinger LF, Soulard A, Dulić V: Differential roles for cyclin-dependent kinase inhibitors p21 and p16 in the mechanisms of senescence and differentiation in human fibroblasts. Mol. Cell. Biol. 1999, 19:2109–2117.
202. Macleod KF: The role of the RB tumour suppressor pathway in oxidative stress responses in the haematopoietic system. Nat. Rev. Cancer 2008, 8:769–781.
203. Baker DJ, Wijshake T, Tchkonia T, LeBrasseur NK, Childs BG, van de Sluis B, Kirkland JL, van Deursen JM: Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 2011, 479:232–236.
204. Jun J-I, Lau LF: The matricellular protein CCN1 induces fibroblast senescence and restricts fibrosis in cutaneous wound healing. Nat. Cell Biol. 2010, 12:676–685.
205. Panowski SH, Wolff S, Aguilaniu H, Durieux J, Dillin A: PHA-4/Foxa mediates diet-restriction-induced longevity of C. elegans. Nature 2007, 447:550–555.
206. Lucanic M, Held JM, Vantipalli MC, Klang IM, Graham JB, Gibson BW, Lithgow GJ, Gill MS: N-acylethanolamine signalling mediates the effect of diet on lifespan in Caenorhabditis elegans. Nature 2011, 473:226–229.
207. Smith DL Jr, Nagy TR, Allison DB: Calorie restriction: what recent results suggest for the future of ageing research. Eur. J. Clin. Invest. 2010, 40:440–450.
208. Piper MDW, Bartke A: Diet and aging. Cell Metab. 2008, 8:99–104.
209. Spindler SR: Caloric restriction: from soup to nuts. Ageing Res. Rev. 2010, 9:324–353.
210. Salih DAM, Brunet A: FoxO transcription factors in the maintenance of cellular homeostasis during aging. Curr. Opin. Cell Biol. 2008, 20:126–136.
211. Berryman DE, Christiansen JS, Johannsson G, Thorner MO, Kopchick JJ: Role of the GH/IGF-1 axis in lifespan and healthspan: lessons from animal models. Growth Horm. IGF Res. 2008, 18:455–471.
212. Kanfi Y, Naiman S, Amir G, Peshti V, Zinman G, Nahum L, Bar-Joseph Z, Cohen HY: The sirtuin SIRT6 regulates lifespan in male mice. Nature 2012, 483:218–221.
213. Finkel T, Deng C-X, Mostoslavsky R: Recent progress in the biology and physiology of sirtuins. Nature 2009, 460:587–591.
214. Longo VD, Kennedy BK: Sirtuins in aging and age-related disease. Cell 2006, 126:257–268.
215. Burnett C, Valentini S, Cabreiro F, Goss M, Somogyvári M, Piper MD, Hoddinott M, Sutphin GL, Leko V, McElwee JJ, Vazquez-Manrique RP, Orfila A-M, Ackerman D, Au C, Vinti G, Riesen M, Howard K, Neri C, Bedalov A, Kaeberlein M, Soti C, Partridge L, Gems D: Absence of effects of Sir2 overexpression on lifespan in C. elegans and Drosophila. Nature 2011, 477:482–485.
216. Agarwal B, Baur JA: Resveratrol and life extension. Ann. N. Y. Acad. Sci. 2011, 1215:138–143.
217. Park S-J, Ahmad F, Philp A, Baar K, Williams T, Luo H, Ke H, Rehmann H, Taussig R, Brown AL, Kim MK, Beaven MA, Burgin AB, Manganiello V, Chung JH: Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases. Cell 2012, 148:421–433.
218. Michishita E, McCord RA, Berber E, Kioi M, Padilla-Nash H, Damian M, Cheung P, Kusumoto R, Kawahara TLA, Barrett JC, Chang HY, Bohr VA, Ried T, Gozani O, Chua KF: SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin. Nature 2008, 452:492–496.
219. Kawahara TLA, Michishita E, Adler AS, Damian M, Berber E, Lin M, McCord RA, Ongaigui KCL, Boxer LD, Chang HY, Chua KF: SIRT6 links histone H3 lysine 9 deacetylation to NF-kappaB-dependent gene expression and organismal life span. Cell 2009, 136:62–74.
220. Kaidi A, Weinert BT, Choudhary C, Jackson SP: Human SIRT6 promotes DNA end resection through CtIP deacetylation. Science 2010, 329:1348–1353.
221. Mao Z, Hine C, Tian X, Van Meter M, Au M, Vaidya A, Seluanov A, Gorbunova V: SIRT6 promotes DNA repair under stress by activating PARP1. Science 2011, 332:1443–1446.
222. Harrison DE, Strong R, Sharp ZD, Nelson JF, Astle CM, Flurkey K, Nadon NL, Wilkinson JE, Frenkel K, Carter CS, Pahor M, Javors MA, Fernandez E, Miller RA: Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 2009, 460:392–395.
223. Zoncu R, Bar-Peled L, Efeyan A, Wang S, Sancak Y, Sabatini DM: mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase. Science 2011, 334:678–683.
224. Hsu PP, Kang SA, Rameseder J, Zhang Y, Ottina KA, Lim D, Peterson TR, Choi Y, Gray NS, Yaffe MB, Marto JA, Sabatini DM: The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 2011, 332:1317–1322.
225. Selman C, Tullet JMA, Wieser D, Irvine E, Lingard SJ, Choudhury AI, Claret M, Al-Qassab H, Carmignac D, Ramadani F, Woods A, Robinson ICA, Schuster E, Batterham RL, Kozma SC, Thomas G, Carling D, Okkenhaug K, Thornton JM, Partridge L, Gems D, Withers DJ: Ribosomal protein S6 kinase 1 signaling regulates mammalian life span. Science 2009, 326:140–144.
226. Wullschleger S, Loewith R, Hall MN: TOR signaling in growth and metabolism. Cell 2006, 124:471–484.
227. Sharp ZD: Aging and TOR: interwoven in the fabric of life. Cell. Mol. Life Sci. 2011, 68:587–597.
228. Stanfel MN, Shamieh LS, Kaeberlein M, Kennedy BK: The TOR pathway comes of age. Biochim. Biophys. Acta 2009, 1790:1067–1074.
229. Zoncu R, Efeyan A, Sabatini DM: mTOR: from growth signal integration to cancer, diabetes and ageing. Nat. Rev. Mol. Cell Biol. 2011, 12:21–35.
230. Sengupta S, Peterson TR, Laplante M, Oh S, Sabatini DM: mTORC1 controls fasting-induced ketogenesis and its modulation by ageing. Nature 2010, 468:1100–1104.
231. Ko Y-G, Nishino K, Hattori N, Arai Y, Tanaka S, Shiota K: Stage-by-stage change in DNA methylation status of Dnmt1 locus during mouse early development. J. Biol. Chem. 2005, 280:9627–9634.
232. Shock LS, Thakkar PV, Peterson EJ, Moran RG, Taylor SM: DNA methyltransferase 1, cytosine methylation, and cytosine hydroxymethylation in mammalian mitochondria. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:3630–3635.
233. Rouleau J, MacLeod AR, Szyf M: Regulation of the DNA methyltransferase by the Ras-AP-1 signaling pathway. J. Biol. Chem. 1995, 270:1595–1601.
234. Slack A, Pinard M, Araujo FD, Szyf M: A novel regulatory element in the dnmt1 gene that responds to co-activation by Rb and c-Jun. Gene 2001, 268:87–96.
235. Kimura H, Nakamura T, Ogawa T, Tanaka S, Shiota K: Transcription of mouse DNA methyltransferase 1 (Dnmt1) is regulated by both E2F-Rb-HDAC-dependent and -independent pathways. Nucleic Acids Res. 2003, 31:3101–3113.
236. Kishikawa S, Murata T, Kimura H, Shiota K, Yokoyama KK: Regulation of transcription of the Dnmt1 gene by Sp1 and Sp3 zinc finger proteins. Eur. J. Biochem. 2002, 269:2961–2970.
237. Peterson EJ, Bögler O, Taylor SM: p53-mediated repression of DNA methyltransferase 1 expression by specific DNA binding. Cancer Res. 2003, 63:6579–6582.
238. Lin R-K, Wu C-Y, Chang J-W, Juan L-J, Hsu H-S, Chen C-Y, Lu Y-Y, Tang Y-A, Yang Y-C, Yang P-C, Wang Y-C: Dysregulation of p53/Sp1 control leads to DNA methyltransferase-1 overexpression in lung cancer. Cancer Res. 2010, 70:5807–5817.
239. Reale A, Matteis GD, Galleazzi G, Zampieri M, Caiafa P: Modulation of DNMT1 activity by ADP-ribose polymers. Oncogene 2005, 24:13–19.
240. Zampieri M, Passananti C, Calabrese R, Perilli M, Corbi N, De Cave F, Guastafierro T, Bacalini MG, Reale A, Amicosante G, Calabrese L, Zlatanova J, Caiafa P: Parp1 localizes within the Dnmt1 promoter and protects its unmethylated state by its enzymatic activity. PLoS ONE 2009, 4:e4717.
241. Torrisani J, Unterberger A, Tendulkar SR, Shikimi K, Szyf M: AUF1 cell cycle variations define genomic DNA methylation by regulation of DNMT1 mRNA stability. Mol. Cell. Biol. 2007, 27:395–410.
242. Braconi C, Huang N, Patel T: MicroRNA-dependent regulation of DNA methyltransferase-1 and tumor suppressor gene expression by interleukin-6 in human malignant cholangiocytes. Hepatology 2010, 51:881–890.
243. Du Z, Song J, Wang Y, Zhao Y, Guda K, Yang S, Kao H-Y, Xu Y, Willis J, Markowitz SD, Sedwick D, Ewing RM, Wang Z: DNMT1 stability is regulated by proteins coordinating deubiquitination and acetylation-driven ubiquitination. Sci Signal 2010, 3:ra80.
244. Ghoshal K, Datta J, Majumder S, Bai S, Kutay H, Motiwala T, Jacob ST: 5-Aza-deoxycytidine induces selective degradation of DNA methyltransferase 1 by a proteasomal pathway that requires the KEN box, bromo-adjacent homology domain, and nuclear localization signal. Mol. Cell. Biol. 2005, 25:4727–4741.
245. Campbell PM, Szyf M: Human DNA methyltransferase gene DNMT1 is regulated by the APC pathway. Carcinogenesis 2003, 24:17–24.
246. Fan H, Zhao Z, Quan Y, Xu J, Zhang J, Xie W: DNA methyltransferase 1 knockdown induces silenced CDH1 gene reexpression by demethylation of methylated CpG in hepatocellular carcinoma cell line SMMC-7721. Eur J Gastroenterol Hepatol 2007, 19:952–961.
247. Ding F, Chaillet JR: In vivo stabilization of the Dnmt1 (cytosine-5)- methyltransferase protein. Proc. Natl. Acad. Sci. U.S.A. 2002, 99:14861–14866.
248. Agoston AT, Argani P, Yegnasubramanian S, De Marzo AM, Ansari-Lari MA, Hicks JL, Davidson NE, Nelson WG: Increased protein stability causes DNA methyltransferase 1 dysregulation in breast cancer. J. Biol. Chem. 2005, 280:18302–18310.
249. Estève P-O, Chang Y, Samaranayake M, Upadhyay AK, Horton JR, Feehery GR, Cheng X, Pradhan S: A methylation and phosphorylation switch between an adjacent lysine and serine determines human DNMT1 stability. Nat. Struct. Mol. Biol. 2011, 18:42–48.
250. Peng L, Yuan Z, Ling H, Fukasawa K, Robertson K, Olashaw N, Koomen J, Chen J, Lane WS, Seto E: SIRT1 deacetylates the DNA methyltransferase 1 (DNMT1) protein and alters its activities. Mol. Cell. Biol. 2011, 31:4720–4734.
251. Lee B, Muller MT: SUMOylation enhances DNA methyltransferase 1 activity. Biochem. J. 2009, 421:449–461.
252. Zhou Q, Agoston AT, Atadja P, Nelson WG, Davidson NE: Inhibition of histone deacetylases promotes ubiquitin-dependent proteasomal degradation of DNA methyltransferase 1 in human breast cancer cells. Mol. Cancer Res. 2008, 6:873–883.
253. Robertson KD, Keyomarsi K, Gonzales FA, Velicescu M, Jones PA: Differential mRNA expression of the human DNA methyltransferases (DNMTs) 1, 3a and 3b during the G(0)/G(1) to S phase transition in normal and tumor cells. Nucleic Acids Res. 2000, 28:2108–2113.
254. Szyf M, Bozovic V, Tanigawa G: Growth regulation of mouse DNA methyltransferase gene expression. J. Biol. Chem. 1991, 266:10027–10030.
255. Mortusewicz O, Schermelleh L, Walter J, Cardoso MC, Leonhardt H: Recruitment of DNA methyltransferase I to DNA repair sites. Proc. Natl. Acad. Sci. U.S.A. 2005, 102:8905–8909.
256. Ha K, Lee GE, Palii SS, Brown KD, Takeda Y, Liu K, Bhalla KN, Robertson KD: Rapid and transient recruitment of DNMT1 to DNA double-strand breaks is mediated by its interaction with multiple components of the DNA damage response machinery. Hum. Mol. Genet. 2011, 20:126–140.
257. Palii SS, Van Emburgh BO, Sankpal UT, Brown KD, Robertson KD: DNA methylation inhibitor 5-Aza-2’-deoxycytidine induces reversible genome-wide DNA damage that is distinctly influenced by DNA methyltransferases 1 and 3B. Mol. Cell. Biol. 2008, 28:752–771.
258. Unterberger A, Andrews SD, Weaver ICG, Szyf M: DNA methyltransferase 1 knockdown activates a replication stress checkpoint. Mol. Cell. Biol. 2006, 26:7575–7586.
259. Negishi M, Chiba T, Saraya A, Miyagi S, Iwama A: Dmap1 plays an essential role in the maintenance of genome integrity through the DNA repair process. Genes Cells 2009, 14:1347–1357.
260. Chen RZ, Pettersson U, Beard C, Jackson-Grusby L, Jaenisch R: DNA hypomethylation leads to elevated mutation rates. Nature 1998, 395:89–93.
261. O’Hagan HM, Wang W, Sen S, Destefano Shields C, Lee SS, Zhang YW, Clements EG, Cai Y, Van Neste L, Easwaran H, Casero RA, Sears CL, Baylin SB: Oxidative damage targets complexes containing DNA methyltransferases, SIRT1, and polycomb members to promoter CpG Islands. Cancer Cell 2011, 20:606–619.
262. Milutinovic S, Zhuang Q, Niveleau A, Szyf M: Epigenomic stress response. Knockdown of DNA methyltransferase 1 triggers an intra-S-phase arrest of DNA replication and induction of stress response genes. J. Biol. Chem. 2003, 278:14985–14995.
263. Barra V, Schillaci T, Lentini L, Costa G, Di Leonardo A: Bypass of cell cycle arrest induced by transient DNMT1 post-transcriptional silencing triggers aneuploidy in human cells. Cell Div 2012, 7:2.
264. Zheng QH, Ma LW, Zhu WG, Zhang ZY, Tong TJ: p21Waf1/Cip1 plays a critical role in modulating senescence through changes of DNA methylation. J. Cell. Biochem. 2006, 98:1230–1248.
265. Le Gac G, Estève P-O, Ferec C, Pradhan S: DNA damage-induced down-regulation of human Cdc25C and Cdc2 is mediated by cooperation between p53 and maintenance DNA (cytosine-5) methyltransferase 1. J. Biol. Chem. 2006, 281:24161–24170.
266. Strozzi GP, Mogna L: Quantification of folic acid in human feces after administration of Bifidobacterium probiotic strains. J. Clin. Gastroenterol. 2008, 42 Suppl 3 Pt 2:S179–184.
268. So A-Y, Jung J-W, Lee S, Kim H-S, Kang K-S: DNA methyltransferase controls stem cell aging by regulating BMI1 and EZH2 through microRNAs. PLoS ONE 2011, 6:e19503.
269. Yamakoshi K, Takahashi A, Hirota F, Nakayama R, Ishimaru N, Kubo Y, Mann DJ, Ohmura M, Hirao A, Saya H, Arase S, Hayashi Y, Nakao K, Matsumoto M, Ohtani N, Hara E: Real-time in vivo imaging of p16Ink4a reveals cross talk with p53. J. Cell Biol. 2009, 186:393–407.
270. Gaudet F, Hodgson JG, Eden A, Jackson-Grusby L, Dausman J, Gray JW, Leonhardt H, Jaenisch R: Induction of tumors in mice by genomic hypomethylation. Science 2003, 300:489–492.
271. Strozzi GP, Mogna L: Quantification of folic acid in human feces after administration of Bifidobacterium probiotic strains. J. Clin. Gastroenterol. 2008, 42 Suppl 3 Pt 2:S179–184.
273. Robertson KD: DNA methylation, methyltransferases, and cancer. Oncogene 2001, 20:3139–3155.
274. Tavares L, Dimitrova E, Oxley D, Webster J, Poot R, Demmers J, Bezstarosti K, Taylor S, Ura H, Koide H, Wutz A, Vidal M, Elderkin S, Brockdorff N: RYBP-PRC1 complexes mediate H2A ubiquitylation at polycomb target sites independently of PRC2 and H3K27me3. Cell 2012, 148:664–678.
275. Rolls A: Hypothalamic Control of Sleep in Aging. Neuromolecular Medicine 2012.
276. Jin Z, El-Deiry WS: Overview of cell death signaling pathways. Cancer Biol. Ther. 2005, 4:139–163.
277. Lallemand-Breitenbach V, de Thé H: PML nuclear bodies. Cold Spring Harb Perspect Biol 2010, 2:a000661.
278. Feng Z, Hu W, Teresky AK, Hernando E, Cordon-Cardo C, Levine AJ: Declining p53 function in the aging process: a possible mechanism for the increased tumor incidence in older populations. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:16633–16638.
279. Simon K, Mukundan A, Dewundara S, Van Remmen H, Dombkowski AA, Cabelof DC: Transcriptional profiling of the age-related response to genotoxic stress points to differential DNA damage response with age. Mech. Ageing Dev. 2009, 130:637–647.
280. Goukassian D, Gad F, Yaar M, Eller MS, Nehal US, Gilchrest BA: Mechanisms and implications of the age-associated decrease in DNA repair capacity. FASEB J. 2000, 14:1325–1334.
281. Preston CR, Flores C, Engels WR: Age-dependent usage of double-strand-break repair pathways. Curr. Biol. 2006, 16:2009–2015.
282. Tiihonen K, Ouwehand AC, Rautonen N: Human intestinal microbiota and healthy ageing. Ageing Res. Rev. 2010, 9:107–116.
283. Choi S-W, Friso S, Dolnikowski GG, Bagley PJ, Edmondson AN, Smith DE, Mason JB: Biochemical and molecular aberrations in the rat colon due to folate depletion are age-specific. J. Nutr. 2003, 133:1206–1212.
284. Herrmann W, Quast S, Ullrich M, Schultze H, Bodis M, Geisel J: Hyperhomocysteinemia in high-aged subjects: relation of B-vitamins, folic acid, renal function and the methylenetetrahydrofolate reductase mutation. Atherosclerosis 1999, 144:91–101.
285. Strozzi GP, Mogna L: Quantification of folic acid in human feces after administration of Bifidobacterium probiotic strains. J. Clin. Gastroenterol. 2008, 42 Suppl 3 Pt 2:S179–184.
286. Strozzi, G. P. & Mogna, L. Quantification of folic acid in human feces after administration of Bifidobacterium probiotic strains. J. Clin. Gastroenterol. 42 Suppl 3 Pt 2, S179–184 (2008).
287. Lamming, D. W. et al. Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. Science 335, 1638–1643 (2012).
288. Lee, I. H. et al. Atg7 modulates p53 activity to regulate cell cycle and survival during metabolic stress. Science 336, 225–228 (2012).
289. Hollstein, M. & Hainaut, P. Massively regulated genes: the example of TP53. J. Pathol. 220, 164–173 (2010).
290. Mahmoudi, S. et al. Wrap53, a natural p53 antisense transcript required for p53 induction upon DNA damage. Mol. Cell 33, 462–471 (2009).
291. Marcel, V. et al. Biological functions of p53 isoforms through evolution: lessons from animal and cellular models. Cell Death Differ. 18, 1815–1824 (2011).
292. Maddocks, O. D. K. & Vousden, K. H. Metabolic regulation by p53. J. Mol. Med. 89, 237–245 (2011).
293. Bieging, K. T. & Attardi, L. D. Deconstructing p53 transcriptional networks in tumor suppression. Trends Cell Biol. 22, 97–106 (2012).
294. Kim, D.-H., Kundu, J. K. & Surh, Y.-J. Redox modulation of p53: mechanisms and functional significance. Mol. Carcinog. 50, 222–234 (2011).
295. Zheltukhin, A. O. & Chumakov, P. M. Constitutive and induced functions of the p53 gene. Biochemistry Mosc. 75, 1692–1721 (2010).
296. Feng, Z., Zhang, H., Levine, A. J. & Jin, S. The coordinate regulation of the p53 and mTOR pathways in cells. Proc. Natl. Acad. Sci. U.S.A. 102, 8204–8209 (2005).
297. Feng, Z. et al. The regulation of AMPK beta1, TSC2, and PTEN expression by p53: stress, cell and tissue specificity, and the role of these gene products in modulating the IGF-1-AKT-mTOR pathways. Cancer Res. 67, 3043–3053 (2007).
298. Maiuri, M. C. et al. Stimulation of autophagy by the p53 target gene Sestrin2. Cell Cycle 8, 1571–1576 (2009).
299. Jung, C. H., Ro, S.-H., Cao, J., Otto, N. M. & Kim, D.-H. mTOR regulation of autophagy. FEBS Lett. 584, 1287–1295 (2010).
300. Yu, W. et al. Epigenetic silencing of tumour suppressor gene p15 by its antisense RNA. Nature 451, 202–206 (2008).
301. Marcheva, B. et al. Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature 466, 627–631 (2010).
302. Janich, P. et al. The circadian molecular clock creates epidermal stem cell heterogeneity. Nature 480, 209–214 (2011).
303. Vermulst, M. et al. Mitochondrial point mutations do not limit the natural lifespan of mice. Nat. Genet. 39, 540–543 (2007).
304. Vermulst, M. et al. DNA deletions and clonal mutations drive premature aging in mitochondrial mutator mice. Nat. Genet. 40, 392–394 (2008).
305. Tyynismaa, H. et al. Mutant mitochondrial helicase Twinkle causes multiple mtDNA deletions and a late-onset mitochondrial disease in mice. Proc. Natl. Acad. Sci. U.S.A. 102, 17687–17692 (2005).
306. Kujoth, G. C. et al. Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science 309, 481–484 (2005).
307. Hütter, E. et al. Oxidative stress and mitochondrial impairment can be separated from lipofuscin accumulation in aged human skeletal muscle. Aging Cell 6, 245–256 (2007).
308. Seo, A. Y. et al. New insights into the role of mitochondria in aging: mitochondrial dynamics and more. J. Cell. Sci. 123, 2533–2542 (2010).
309. Mammucari, C. & Rizzuto, R. Signaling pathways in mitochondrial dysfunction and aging. Mech. Ageing Dev. 131, 536–543 (2010).
310. Passarino, G., Rose, G. & Bellizzi, D. Mitochondrial function, mitochondrial DNA and ageing: a reappraisal. Biogerontology 11, 575–588 (2010).
311. Lee, S. et al. Mitochondrial fission and fusion mediators, hFis1 and OPA1, modulate cellular senescence. J. Biol. Chem. 282, 22977–22983 (2007).
312. Tandler, B. & Hoppel, C. L. Studies on giant mitochondria. Ann. N. Y. Acad. Sci. 488, 65–81 (1986).
313. Yoon, Y.-S. et al. Formation of elongated giant mitochondria in DFO-induced cellular senescence: involvement of enhanced fusion process through modulation of Fis1. J. Cell. Physiol. 209, 468–480 (2006).
314. Li, T. et al. Expression of SUMO-2/3 induced senescence through p53- and pRB-mediated pathways. J. Biol. Chem. 281, 36221–36227 (2006).
315. Bischof, O. & Dejean, A. SUMO is growing senescent. Cell Cycle 6, 677–681 (2007).
316. Robertson, A. K., Geiman, T. M., Sankpal, U. T., Hager, G. L. & Robertson, K. D. Effects of chromatin structure on the enzymatic and DNA binding functions of DNA methyltransferases DNMT1 and Dnmt3a in vitro. Biochem. Biophys. Res. Commun. 322, 110–118 (2004).
317. Kiskinis, E. et al. RIP140 directs histone and DNA methylation to silence Ucp1 expression in white adipocytes. EMBO J. 26, 4831–4840 (2007).
318. Estève, P.-O., Chin, H. G. & Pradhan, S. Molecular mechanisms of transactivation and doxorubicin-mediated repression of survivin gene in cancer cells. J. Biol. Chem. 282, 2615–2625 (2007).
319. Lehnertz, B. et al. Suv39h-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin. Curr. Biol. 13, 1192–1200 (2003).
320. Fuks, F., Hurd, P. J., Deplus, R. & Kouzarides, T. The DNA methyltransferases associate with HP1 and the SUV39H1 histone methyltransferase. Nucleic Acids Res. 31, 2305–2312 (2003).
321. Lavoie, G., Estève, P.-O., Laulan, N. B., Pradhan, S. & St-Pierre, Y. PKC isoforms interact with and phosphorylate DNMT1. BMC Biol. 9, 31 (2011).
322. Sugiyama, Y. et al. The DNA-binding activity of mouse DNA methyltransferase 1 is regulated by phosphorylation with casein kinase 1delta/epsilon. Biochem. J. 427, 489–497 (2010).
323. Estève, P.-O., Chin, H. G. & Pradhan, S. Human maintenance DNA (cytosine-5)-methyltransferase and p53 modulate expression of p53-repressed promoters. Proc. Natl. Acad. Sci. U.S.A. 102, 1000–1005 (2005).
324. Robertson, K. D. et al. DNMT1 forms a complex with Rb, E2F1 and HDAC1 and represses transcription from E2F-responsive promoters. Nat. Genet. 25, 338–342 (2000).
325. Myant, K. & Stancheva, I. LSH cooperates with DNA methyltransferases to repress transcription. Mol. Cell. Biol. 28, 215–226 (2008).
326. Qin, W., Leonhardt, H. & Pichler, G. Regulation of DNA methyltransferase 1 by interactions and modifications. Nucleus 2, 392–402 (2011).
327. Issa, J. P., Vertino, P. M., Boehm, C. D., Newsham, I. F. & Baylin, S. B. Switch from monoallelic to biallelic human IGF2 promoter methylation during aging and carcinogenesis. Proc. Natl. Acad. Sci. U.S.A. 93, 11757–11762 (1996).
328. Rubinsztein, D. C., Mariño, G. & Kroemer, G. Autophagy and aging. Cell 146, 682–695 (2011).
329. Wang, Y. et al. Autophagic activity dictates the cellular response to oncogenic RAS. Proc. Natl. Acad. Sci. U.S.A. 109, 13325–13330 (2012).
330. Barber, M. F. et al. SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation. Nature 487, 114–118 (2012).
331. Pan, D., Zhu, Q., Conboy, M. J., Conboy, I. M. & Luo, K. SnoN activates p53 directly to regulate aging and tumorigenesis. Aging Cell 11, 902–911 (2012).
332. Rayess, H., Wang, M. B. & Srivatsan, E. S. Cellular senescence and tumor suppressor gene p16. Int. J. Cancer 130, 1715–1725 (2012).
333. Li, T. et al. Tumor suppression in the absence of p53-mediated cell-cycle arrest, apoptosis, and senescence. Cell 149, 1269–1283 (2012).
334. Jurk, D. et al. Postmitotic neurons develop a p21-dependent senescence-like phenotype driven by a DNA damage response. Aging Cell 11, 996–1004 (2012).
335. Wilkinson, J. E. et al. Rapamycin slows aging in mice. Aging Cell 11, 675–682 (2012).
336. Adler, A. S. et al. Motif module map reveals enforcement of aging by continual NF-kappaB activity. Genes Dev. 21, 3244–3257 (2007).
337. Tilstra, J. S. et al. NF-κB inhibition delays DNA damage-induced senescence and aging in mice. J. Clin. Invest. 122, 2601–2612 (2012).
338. Mattison, J. A. et al. Impact of caloric restriction on health and survival in rhesus monkeys from the NIA study. Nature 489, 318–321 (2012).
339. Colman, R. J. et al. Caloric restriction delays disease onset and mortality in rhesus monkeys. Science 325, 201–204 (2009).
340. Wu, C.-Y. et al. A persistent level of Cisd2 extends healthy lifespan and delays aging in mice. Hum. Mol. Genet. 21, 3956–3968 (2012).
341. Chicas, A. et al. H3K4 demethylation by Jarid1a and Jarid1b contributes to retinoblastoma-mediated gene silencing during cellular senescence. Proc. Natl. Acad. Sci. U.S.A. 109, 8971–8976 (2012).
342. Aksoy, O. et al. The atypical E2F family member E2F7 couples the p53 and RB pathways during cellular senescence. Genes Dev. 26, 1546–1557 (2012).
343. Yuan, Y., Chen, Y.-P. P., Boyd-Kirkup, J., Khaitovich, P. & Somel, M. Accelerated aging-related transcriptome changes in the female prefrontal cortex. Aging Cell 11, 894–901 (2012).
344. Leontieva, O. V. et al. Hypoxia suppresses conversion from proliferative arrest to cellular senescence. Proc. Natl. Acad. Sci. U.S.A. 109, 13314–13318 (2012).
345. Laberge, R.-M. et al. Glucocorticoids suppress selected components of the senescence-associated secretory phenotype. Aging Cell 11, 569–578 (2012).
346. Gudjonsson, T. et al. TRIP12 and UBR5 suppress spreading of chromatin ubiquitylation at damaged chromosomes. Cell 150, 697–709 (2012).
347. Lian, C. G. et al. Loss of 5-hydroxymethylcytosine is an epigenetic hallmark of melanoma. Cell 150, 1135–1146 (2012).

  • 最終更新:2013-02-12 23:40:46